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Backward Angle Fermion-Boson Scattering* 
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In a Regge-type treatment of Fermion-boson reactions, backward angle dififjerential cross sections are 
dominated by complex conjugate pairs of ^-channel Regge trajectories (this is true for spins J and 0 or 1, 
and probably in general). It is demonstrated here that generally, these differential cross sections and associ
ated final-state polarizations will not exhibit oscillatory behavior as a function of u and s, in spite of inter
ferences between the poles of such complex conjugate pairs. This result is in agreement with previous findings 
in the special case of ir-N scattering. 

I. INTRODUCTION 

IT has been pointed out that at backward angles in 
pion-nucleon scattering, for which the kinematic 

invariant u i^ < 0 , the Regge trajectory amplitudes 
exhibit complex conjugate trajectories, which, however, 
interfere with each other in such a way that no oscilla
tory terms appear in the backward angle differential 
cross section.^""^ The question remained whether oscil
latory behavior would occur in boson-Fermion reactions 
with higher spin. Examples of such processes would be 
vector-spinor scattering such as elastic proton-deuteron 
scattering, or inelastic processes such as pion photo-
production from nucleons. One might, at first sight, 
expect oscillatory terms due to interference between 
conjugate trajectories ai and 0:2=ai*, having the 
asymptotic form 

Re(V'yo)"i+"2* = -S'2 ^««iXcos[2 Imai In(V^o)]. 

Observation of such oscillations would provide a striking 
confirmation of the Regge-pole hypothesis. This paper, 
however, demonstrates that, with regard to the leading 
asymptotic behavior in ^, no oscillatory cross sections 
will occur. I t is shown, too, that in the same asymptotic 
limit, the polarization of a final-state particle will not 
be oscillatory in the case of an unpolarized initial state. 
Only when the initial state is polarized (experimentally 
difficult to achieve), or when two close-lying pairs of 
trajectories occur,^ might oscillations be observed. 

II. GENERAL PROPERTIES OF THE 
AMPLITUDES 

Let us begin with a brief review of several features 
of TT—N scattering amplitudes. Let ^ , B be the conven
tional scalar amplitudes, and ^i, 2̂ the initial and final 
pion momenta in the cm frame. The T matrix will then 
be A+B{qi+q2)/2, Let Fi+, Fr denote definite parity 
partial-wave ampHtudes, for final states with / = / ± J . 
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These F's exhibit the MacDowell symmetry^ (here 
written for ^-channel amplitudes since we are to be 
interested in backward angles of the s channel where 
^/-channel Regge poles dominate), 

i 7 ^ . ( ^ l / 2 ) = - F ( , ^ l ) - ( - ^ l / 2 ) . (1) 

Also, Fi^{u^i^)-\-F^+i)-{u^i'^) is regular at ^ = 0 , while 
Fi^{u^i^)-F^i+iy{u^i^) has a u^^i^ or \/{uyi^ singularity. 
From this, it follows that the /-plane singularities of 
these partial-wave amplitudes are complex conjugate 
poles with complex conjugate residues for u<0. 

Incidentally, a dispersion-theoretic treatment of this 
problem by Amati et al.^ has confirmed these properties. 

A more general situation will now be considered: 
Let a, c represent initial and final bosons with respective 
spins Sa, Sc\ let b, d represent initial and final fermions 
with respective spins ^6, sa. One can express two 
particular hehcity ampHtudes^ in the ath channel {a=s 
or u here) as follows: 

/> XcXrf; \a\h (e,<t>)-

/-xc-x* xaXb{e,<i>)=Zj iJ+i)bj'(w) 
'(e), 

where 

Let 

\ = \a—\b, 

fx=Xc~\d, 

IF = total c m . energy in ath channel. 

fii,2'^(W)^ay(W)±by{W), 

(2) 

(3) 

Then iSi,2''̂  are recognized to be definite parity partial-
wave amplitudes. 

In a recent study, Marx^ has established that for 
spin 0 or 1 bosons, these jS's have the following two 
properties. Of i5iit/32, one combination has a u^'^ 
behavior, while the other is regular at u=0. This 
establishes the same /-plane behavior for these jS's as 
in the T~N case. Also, one has that /3i'^(+TF) 
= V^2'^i—W), where 77 = d=l, and in both these state
ments, the sign depends on the particular set of helic-

5 S. W. MacDowell, Phys. Rev. 116, 774 (1959). 
^ D. Amati, A. StangheUini, and K. Wilson, Nuovo Cimento 28, 

639 (1963). 
7 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 403 (1959). 
^ Egon Marx, California Institute of Technology Ph.D. thesis, 

1963 (unpublished). 
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ities. These results can be obtained by explicit evalua
tion of T-matrix elements, in terms of scalar amplitudes 
multiplied by kinematic invariants, between actual 
helicity eigenfunctions of the relevant particles, and 
subsequent comparison with Eqs. (2). One may 
plausibly conjecture this to be true for all boson and 
Fermion spins.^ The above being true, one then has the 
possibility of oscillations from interferences between 
complex conjugate poles. This latter situation now will 
be shown not to occur. 

Let us now consider some properties of the x̂̂ *̂̂ . One 
can write^ 

j+\ 
dx/{d)=(l+xr^^+^i'Kl-x)-^^-^i'^ E A,P,(x), (4) 

'where x=cos6 and the exact form of ^A; will not be 
important here. Using d\,-./(x)= {—)'^^^d\/{—x), one 
obtains 

dx,-/{x)={l-x)-^^+^i'^(l+x)~ ( X - M / 2 ) 

J-fX 

X L AkPk{-x)x{-y+K (4a) 
k=J-\ 

Anticipating Reggeization of the amplitudes (2) by 
means of a Watson-Sommerfeld transformation, one 
can rewrite Eq. (2) keeping only the highest order 
polynomial in the expansions of dx^-^, and redefining 
the /S's as in Eq. (5) for simplicity: 

y ^ ^ ^ + x ^ F = ( / 3 / ^ i 5 2 0 / 2 ; 

fxcM; XaXI>{e,<t>=0)^j: ( / + i ) ( / 3 / ( T F ) + / 3 2 ^ ( T F ) ) 

(5) 

J 

X I sin- / cos- I Pj^\(x)[ 2 cos- sin- J , 
\ 2 / 2 / \ 2 2 / 

(6) 
Uc-M, XaX6(̂ ,<̂  = 0 ) - E (J+h)W(W)-^2'iW)) 

' ( cos- / sin- I Fji\(x){ 2 cos- sin- ) . 
\ 2 / 2 / \ 2 2 / 

III. REGGEIZATION AND ANALYTIC 
CONTINUATION 

Performing the Watson-Sommerfeld^^ transformation 
as in Ref. 10, one sees that no difficulties are introduced 

^Indeed, the MacDowell symmetry seems related to the fact 
that the intrinsic parities of a Fermion and anti-Fermion are oppo
site. Consider a Born term with intermediate ^-channel Fermion 
state, in the Feynman-Dyson perturbation sense. It is equivalent 
to two different time-ordered graphs in the ordinary perturbation 
theory, with intermediate fermion and antifermion states, respec
tively, and consequently contributing to opposite parity partial 
waves. In a simple case such as xiV, one can directly obtain the 
result that these two graphs then manifestly possess the 
MacDowell symmetry. 

10 T, W. B, Kibble, Phys. Rev, 131, 2282 (1963). 

by the redefinition (5); the jS's still have the analyticity 
in u, j discussed above. The use of P/s rather than the 
functions suggested by Gell-Mann et al.,^^ will also not 
affect the essential structure of this argument. The 
modifications of Ref. 11 affect singularities in the left-
hand / plane and are thus not crucial when the 
Watson-Sommerf eld contour is taken at R e / > — §. 

Considering now ^-channel amplitudes, for u<0, 
one obtains 

eu / Ou / Buy 
fxcM, \a\b={ s i n — / COS— j 

X(sin(9w)->^[pf«+)7P*f«*], 

/ du / Buy 
f-Xc,-\d, XaX6=( COS— / s i u — j 

(7) 

X(sin^^)-^[pf«-77p*f«*], (8) 

where f a= (l+ee~*'^")Pa+x(—cos^^)/(2 cosTra), p=resi-
due of ( /+ i ) /3 at pole /=aXmiscellaneous ^^irrelevant" 
factors, e=signature of trajectory. Here, the physical 
trajectory was considered to have the same parity as 
the I3i amplitude rather than the ^2 amplitude, but this 
choice is not essential to the main argument. 

In order to obtain an expression for the ^-channel 
differential cross section, one must be able to relate 
.y-channel and ^-channel amplitudes. In this regard, 
recent work by Trueman and Wick^^ proves most 
valuable; the chief result of relevance here is stated 
below for s-u channel crossing. 

Let fu\c\d; xaxfe" bc the analytic continuation of 
fu\c\d; xax& to thc ^-chanucl physical region, and let 
f^a^ys be an .y-channel helicity amplitude. Then 

Wuf\cM; XaX6= W^ E i-yd„M^<'(Xd)d^xi>^\Xb) 

XdyXc^'(}Pc)d^Xa^-(rPa)XfSaPy6, ( 9 ) 

where Xd, Xb, \pc, ^a are certain real angles defined in 
Ref. 12. From the orthogonality properties of the d\/, 
it immediately follows that 

d& 

do.. 
•J = Z \fSa^y^\ 

= L \UV— 
\c\d\a\h S 

(10) 

The elegance of this result lies in the absence of cross 
terms. I t should be emphasized that this approach 
makes it unnecessary to express all amplitudes in terms 
of scalar amplitudes and then to expHcitly perform 
crossing in a lengthy and tedious calculation. 

11 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and 
F. Zachariasen (to be published). 

12 T. L. Trueman and G. C. Wick, Brookhaven National 
Laboratory Report BNL 7301, 1963 (unpublished). 
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Now consider the analytic continuation /*. In a case 
of elastic scattering, let /x=boson mass, m=Femiion 
mass. First note that as ^ —> oo, one has generally^^ 
cosdu^ — us/S^, where 

Also, 

sin(du/2)=(-utyf^/s, 

cos (du/2) = Km^-fx') - us2'^^/S. (11) 

The analytic continuation of sin(^#/2) is zLi{utY^'^/S 
when continuing to the region u^ / < 0 ; again, it is not 
necessary to consider the proper choice of sign in this 
argument. Similarly, 

cos(̂ #/2)'-̂  {-usyiys^ (+uty^ys. 
Thus, (cos^z^/2/sin^V2) has modulus 1 as ^—> oo, u 
fixed. Obviously, this behavior is also true for the case 
of all unequal masses, so long as s^ (square of any mass 
involved). 

Now one can most conveniently evaluate the right-
hand side of Eq. (10) by considering pairs of ampHtudes 
fu±{\f},{\i]'^. From Eqs. (7), the sum of the squares of 
the moduli of two such amplitudes is 

|sin^z/|-2H2|pM2+2|p*fa*|^). (12) 

Each amplitude separately contributes an oscillatory 
interference term Re(p*^(fa)*(fa*)) involving trigono
metric functions whose argument is 2 Im.(a(u)) 
Xln(V^o). However, the sum of the contributions from 
such a pair of amplitudes, and consequently the 
differential cross section, contains no oscillatory term, 
asymptotically in s}^ 

IV. POLARIZATION 

Two types of measurements of final-state polariza
tions are of interest. ̂ ^ The simplest quantity to observe 
is the polarization of one of the final-state particles, 
denoted by (S^'"^}, which for an unpolarized initial state, 
will be nonvanishing only in the direction perpendicular 
to the reaction plane when the reaction conserves 
parity.^^ Another quantity of interest is the correlation 
coefficient 

C{lm)=^{Si<^Sm'}. (13) 

I t is again convenient to employ helicity amplitudes 
when explicitly expressing these quantities. The result
ant expressions for either of the above quantities, when 
the initial state is unpolarized, will be the sum of two 

13 Interference between different fermion trajectories can still 
give an oscillating term; but this will be smaller by 52Re(/i-j2). 

1̂  The author thanks Dr. H. Uberall for a remark about a mis-
impression of the author in a preKminary preprint; his remark 
instigated the work of this section. 

1̂  See Williams, An Introduction to Elementary Particles (Aca
demic Press Inc., New York, 1961). 

or more terms, each of which has the form 

2.^ f\c+a,\d-hh;\a\b f\c-{-a',\d+h';\aKbX\c\daha'b' ( 14 ) 
\a\b,\cKd 

where x- - - will be a product, in general, of matrix 
elements of spin operators. As an example, one finds that 
if parity is conserved, 

{5i*') = sum of two terms as in (14) 

= 2 ^ I m ( / x d X c + l , X a X 6 * / x d X c ; XaX&) 
XcXd,XoX& 

X[(^c-Xc)(5.+X^+l)J/^ (15) 

Employing the analytic continuation of helicity ampli
tudes of Trueman and Wick, Eq. (14) becomes 

a^,ySfiv 
(16) 

where F • • • will be equal to a; • • • multiplied by rotation 
matrices of the angles involved in the analytic continua
tion, as defined in Ref. 12. The important feature of this 
expression is that the a and 13 indices are not involved 
in any contracted products with rotation matrices, this 
having resulted from the orthogonality properties of 
the rotation matrices involved here. 

The following properties of helicity amplitudes should 
be noted: 

/x. 
J 

= E ( / + * ) XaxAcu'd^^ie) ( - ) (X-M) 

= i-y-''fxaM,:UXd(.e,<t>=0). (17) 

Using this relation in (14), one now obtains Eq. (16) in 
a slightly different form: 

aP,y8fiv 
(18) 

where a phase independent of a, /5 has been absorbed 
into the F- • •. Now, one can employ Eq. (7) and again 
consider pairs of terms (afS) and (—a—fi), 

Equation (18) now will be the sum of terms as in (19) : 

^ 7 5 M ' ' ( [ p r a + ^ P * r a * ] * C p ' f a + 7 7 V * f a * ] 

+ Cpr«-̂ P*f«*]Tp'fa-̂ V*fa*]) 
= 2 YySfiv (p*p'f a*f a + ^ ^ ' p p ' * f a**f a*) • 

Since fa is proportional to exp£a{u) In^], one thus has 
that r«fa* = f«**?«* is proportional to ^2iiea(w)̂  x^^s 
(independent of all the exact details of the above 
polarization expressions) there will be no oscillatory 
terms, leading order in s, in any final-state polarizations 
when the initial state is unpolarized. This is in agree
ment with the findings of Uberall and of Gribov, 
Okun, and Pomeranchuk^ for TTÂ  scattering. 

When the initial state is polarized, the a, p sums now 
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will involve tensorially contracted products with 
rotation matrices and with an initial-state density 
matrix, and the above results are not expected to 
obtain. 

It is simple to see/ also, that if two close-lying pairs 
of trajectories are present, both polarization and dcr/dO, 
can exhibit oscillations, but these will be down by a 
factor 5 to the power {a^—ai) from the dominant terms 
in the relevant expressions. (Oscillations have been 

shown to occur, in this situation, in ir-N scattering, 
by Gribov et alJ^) 
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In order to explain the eightfold way, four elementary baryon fields are introduced. Three of them form a 
unitary triplet and the fourth is a unitary singlet. In this approach, triplets, sextets, etc., are possible mul-
tiplets as well as singlets, octets, decuplets, etc. This model has a new quantum number, "hypercharge 
center." Assuming that the symmetry-breaking interactions transform like components of a triplet, selection 
rules in the production and decay of the triplets are derived. I t is proposed that the isodoublet /c(725) along 
with the isosinglet z^{Y=2) or ?7'(F=0) forms a unitary triplet. If the symmetry-breaking interaction 
transforms like a component of the octet, the following baryon lepton symmetry suggested by Gell-Mann 

e- ^ *'Vcos^'+"A'"sin(9', 

Ai-<-> - 'Vs in^ '+"A'"cos^ ' , 

between four leptons and four elementary baryon fields is shown to be possible. 

T 
I. INTRODUCTION 

HE success of the broken eightfold way is strik
ing.̂ '̂  Some have looked for its origin in the boot

strap mechanism. '̂4 However, it is not easy to under
stand why the bootstrap mechanism prefers the octet 
scheme of the SU(3) symmetry to other models. The 
origin of an internal symmetry is most easily under
stood by introducing elementary fields and a symmetric 
Lagrangian. 

In order to explain the eightfold way, at least four 
elementary fields are necessary. If we assume the ele
mentary fields are singly charged or neutral, the follow
ing two possibiHties exist^: (a) '*^," "n," "A," and 
"A'" are elementary where ''f (B=l, F = 1, J = J , 

* Work supported in part by the U. S. Atomic Energy 
Commission. 

t On leave of absence from Physics Department, Tokyo Uni
versity of Education, Tokyo, Japan. 
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s There are two other possibilities: (i) "H^" *'S~," "A," and 

''A'"; and (ii) " S ^ " "H"," "Z"," and "A'." They are equivalent 
to case (b) and (a) group theoretically. 

Q= 1), ^ V (B= 1, F = 1, I=h e=0) , and "A" (B= 1, 
F=0, 7=0, Q=0) form a unitary triplet which trans
forms like 3, and where "A''̂  (B= 1, F=0 , 7=0, Q=0) 
is a unitary singlet.^ (b) '%'' ''p,'' ^'Z," and "A'" are 
elementary, where '%'' ''p,'' and ^^Z" ( 5 = 1 , F=2 , 
7=0, Q—l) form a unitary triplet which transforms 
Hke 3*, and where "A"' is a unitary singlet.^ 

Here, the fields "j^,^' "#," and "A" have no relation 
to the real p, n, and A, which are components of a 
unitary octet, except that they have the same baryon 
number, hypercharge, isotopic spin, and charge. At the 
present time, the particles associated with the fields 
''p,'' '%'' ^̂ A," ^%'' and "A'̂ ^ have not yet been ob
served. Their masses must be very large—they may 
even be infinite. 

In this model all stable and unstable particles are 
considered to be bound states of these elementary par
ticles, and they belong to multiplets corresponding to 
irreducible representations of SU(3) symmetry. In this 
article, the mechanism of their dynamical emergence 
will not be discussed, however. 

^ In the following, the symbols JBI, B^, BS, and B are used for 
''p,'^ "/i ," ''A,'* and " A V ' respectively, for case (a). 

7 In the following, the symbols B^, B\ B^, and B are used for 
*'w," "p,'^ "Z," and "A'," respectively, for case (b), 


